Structural basis of nuclear import of flap endonuclease 1 (FEN1).
نویسندگان
چکیده
Flap endonuclease 1 (FEN1) is a member of the nuclease family and is structurally conserved from bacteriophages to humans. This protein is involved in multiple DNA-processing pathways, including Okazaki fragment maturation, stalled replication-fork rescue, telomere maintenance, long-patch base-excision repair and apoptotic DNA fragmentation. FEN1 has three functional motifs that are responsible for its nuclease, PCNA-interaction and nuclear localization activities, respectively. It has been shown that the C-terminal nuclear localization sequence (NLS) facilitates nuclear localization of the enzyme during the S phase of the cell cycle and in response to DNA damage. To determine the structural basis of the recognition of FEN1 by the nuclear import receptor importin α, the crystal structure of the complex of importin α with a peptide corresponding to the FEN1 NLS was solved. Structural studies confirmed the binding of the FEN1 NLS as a classical bipartite NLS; however, in contrast to the previously proposed (354)KRKX(8)KKK(367) sequence, it is the (354)KRX(10)KKAK(369) sequence that binds to importin α. This result explains the incomplete inhibition of localization that was observed on mutating residues (365)KKK(367). Acidic and polar residues in the X(10) linker region close to the basic clusters play an important role in binding to importin α. These results suggest that the basic residues in the N-terminal basic cluster of bipartite NLSs may play roles that are more critical than those of the many basic residues in the C-terminal basic cluster.
منابع مشابه
Structural basis for recruitment of human flap endonuclease 1 to PCNA.
Flap endonuclease-1 (FEN1) is a key enzyme for maintaining genomic stability and replication. Proliferating cell nuclear antigen (PCNA) binds FEN1 and stimulates its endonuclease activity. The structural basis of the FEN1-PCNA interaction was revealed by the crystal structure of the complex between human FEN1 and PCNA. The main interface involves the C-terminal tail of FEN1, which forms two bet...
متن کاملA Cryptic Targeting Signal Creates a Mitochondrial FEN1 Isoform with Tailed R-Loop Binding Properties
A growing number of DNA transacting proteins is found in the nucleus and in mitochondria, including the DNA repair and replication protein Flap endonuclease 1, FEN1. Here we show a truncated FEN1 isoform is generated by alternative translation initiation, exposing a mitochondrial targeting signal. The shortened form of FEN1, which we term FENMIT, localizes to mitochondria, based on import into ...
متن کاملSingle-molecule characterization of Fen1 and Fen1/PCNA complexes acting on flap substrates
Flap endonuclease 1 (Fen1) is a highly conserved structure-specific nuclease that catalyses a specific incision to remove 5' flaps in double-stranded DNA substrates. Fen1 plays an essential role in key cellular processes, such as DNA replication and repair, and mutations that compromise Fen1 expression levels or activity have severe health implications in humans. The nuclease activity of Fen1 a...
متن کاملThe architecture of an Okazaki fragment-processing holoenzyme from the archaeon Sulfolobus solfataricus.
DNA replication on the lagging strand occurs via the synthesis and maturation of Okazaki fragments. In archaea and eukaryotes, the enzymatic activities required for this process are supplied by a replicative DNA polymerase, Flap endonuclease 1 (Fen1) and DNA ligase 1 (Lig1). These factors interact with the sliding clamp PCNA (proliferating cell nuclear antigen) providing a potential means of co...
متن کاملRepair complexes of FEN1 endonuclease, DNA, and Rad9-Hus1-Rad1 are distinguished from their PCNA counterparts by functionally important stability.
Processivity clamps such as proliferating cell nuclear antigen (PCNA) and the checkpoint sliding clamp Rad9/Rad1/Hus1 (9-1-1) act as versatile scaffolds in the coordinated recruitment of proteins involved in DNA replication, cell-cycle control, and DNA repair. Association and handoff of DNA-editing enzymes, such as flap endonuclease 1 (FEN1), with sliding clamps are key processes in biology, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 68 Pt 7 شماره
صفحات -
تاریخ انتشار 2012